- 1. Write an expression: 7 more than a number x.
- 2. Determine if 3 is a solution of 2x 4 = 2.
- 3. Gail spent \$4 more than twice as much as Casey at a store. If Casey spent \$6, how much did Gail spend?

GOAL

Represent functions as rules and as tables.

Vocabulary

A function consists of:

- A set called the **domain** containing numbers called **inputs**, and a set called the **range** containing numbers called **outputs**.
- A pairing of inputs with outputs such that each input is paired with exactly one output.

The input variable is called an independent variable.

The output variable is called the **dependent variable** because its value depends on the value of the input variable.

EXAMPLE 1

Identify the domain and range of a function

The input-output table shows the price of various lobsters at a fish market. Identify the domain and range of the function. Input (pounds)

Input (Pounds)	1.5	2.3	3.1	4.2
Output (dollars)	\$7.80	\$11.96	\$16.12	\$21.82

Solution

The domain is the set of inputs:

The range is the set of outputs:

Exercises for Example 1

Identify the domain and range of the function.

1.

Input	2	5	7	8
Output	5	11	15	17

2.

Input	1	3	4	7
Output	2	8	11	20

Homework: Pages 44-45; #4-20 even

EXAMPLE 2

Make a table for a function

The domain of the function y = x - 3 is 2, 5, 8, and 11.

Make a table for the function, then identify the range of the function.

Solution

X	2	5	8	11
Y=x-3				

The range of the function is:

Exercises for Example 2

Make a table for the function. Identify the range of the function.

3. y = 4xDomain: 0, 3, 5, and 7

X	-		
Y	!		

4. y = 3x - 22Domain: 1, 2, 3, and 4

X		
Y		

EXAMPLE 3

Write a function rule

Write a rule for the function.

Input	3	6	7	10
Output	15	30	35	50

Exercises for Example 3

Write a rule for the function.

5.

Input	3	5	7	9
Output	14	16	18	20

6.

Input	6	7	8	9
Output	3	3.5	4	4.5

EXAMPLE 4

Write a function rule for a real-world situation

At a community art center, art lesson are offered at night. The fee is \$12 per lesson. You plan to attend up to 5 lessons. Write the amount you will spend as a function of the number of lessons you attend. Identify the independent and dependent variables. Then identify the domain and range.

Homework: Pages 44-45; #4-20 even

1.7 Practice B

Algebra 1

Complete the sentence.

- 1. The input variable is called the ______ variable.
- 2. The output variable is called the ______ variable.

Tell whether the pairing is a function.

3.

Input	Output
1	15
3	20
5	15
7	20

4.

Input	Output
5	5
6	5
7	5
8	5

5.

- A) Make a table for the function. B) Identify the range of the function.
- 6. y = 4x 2Domain: 1, 2, 3, 4

X	Y

Algebra 1

1.7 Practice B

7. y = 0.1x + 3Domain: 10, 20, 30, 40

X	Y		

8. $y = \frac{1}{2}x + 2$ Domain: 6, 7, 8, 9

X	Y				
	94				
75 TO					
1489					

Write a rule for the function.

9.

Input, x	1	2	3	4
Output, y	5	10	15	20

10.

Input, x	10	11	12	13
Output, y	3	4	5	6

Name			
Name			

Date		
Date		

1.7 Practice B

Algebra 1

11. Shoe Sizes The table shows men's shoe sizes in the United States and Australia. Write a rule for the Australian size as a function of the United States' size.

U.S. size	5	6	7	8	9	10
Australian size	3	4	5	6	7	8

- 12. Balloon Bunches You are making balloon bunches to attach to tables for a charity event. You plan on using 8 balloons in each bunch.
 - a.) Write a rule for the total number of balloons used as a function of the number of bunches created.
 - b.) Identify the independent and dependent variables.
 - c.) How many balloons will you use if you make 10 bunches?

- **d.)Baking** A baker has baked 10 loaves of bread so far today and plans on baking 3 loaves more each hour for the rest of his shift.
 - a.) Write a rule for the total number of loaves baked as a function of the number of hours left in the baker's shift.
 - b.) Identify the independent and dependent variables.
 - c.) How many loaves will the baker make if he has 4 hours left in his shift?

FUNCTIONS

Some relations are also functions. A relation is a function if for every element in the domain, there is exactly one element in the range. In other words, for each value for x there is only one unique value for y.

- **EXAMPLE 1:** $\{(2, 4), (2, 5), (3, 4)\}$ is **NOT** a function because in the first pair, 2 is paired with 4, and in the second pair, 2 is paired with 5. The 2 can be paired with only one number to be a function. In this example, the x value of 2 has more than one value for y: 4 and 5.
- **EXAMPLE 2:** {(1, 2), (3, 2), (5, 6)} **IS** a function. Each first number is paired with only one second number. The 2 is repeated as a second number, but the relation remains a function.

Determine whether the ordered pairs of numbers below represent a function. Write "F" if it is a function. Write "NF" if it is not a function.

- 1. {(-1, 1), (-3, 3), (0, 0), (2, 2)}
- 2. $\{(-4, -3), (-2, -3), (-1, -3), (2, -3)\}$
- 3. $\{(5,-1),(2,0),(2,2),(5,3)\}$
- 4. {(-3, 3), (0, 2), (1, 1), (2, 0)}
- 5. $\{(-2, -5), (-2, -1), (-2, 1), (-2, 3)\}$
- 6. {(0, 2), (1, 1), (2, 2), (4, 3)}
- 7. {(4, 2), (3, 3), (2, 2), (0, 3)}
- 8. $\{(-1,-1), (-2,-2), (3,-1), (3,2)\}$
- 9. $\{(2,-2), (0,-2), (-2,0), (1,-3)\}$
- 10. $\{(2, 1), (3, 2), (4, 3), (5, -1)\}$
- 11. $\{(-1,0),(2,1),(2,4),(-2,2)\}$
- 12. {(1, 4), (2, 3), (0, 2), (0, 4)}
- 13. {(0,0), (1,0), (2,0), (3,0)}
- 14. $\{(-5,-1), (-3,-2), (-4,-9), (-7,-3)\}$
- 15. {(8, -3), (-4, 4), (8, 0), (6, 2)}
- 16. $\{(7,-1), (4,3), (8,2), (2,8)\}$
- 17. $\{(4,-3),(2,0),(5,3),(4,1)\}$
- 18. $\{(2,-6), (7,3), (-3,4), (2,-3)\}$
- 19. $\{(1, 1), (3, -2), (4, 16), (1, -5)\}$
- 20. {(5,7), (3, 8), (5, 3), (6, 9)}